
NATIONAL ENGINEERING COLLEGE

(An Autonomous Institution Affiliated to Anna University, Chennai)

K.R.NAGAR, KOVILPATTI – 628 503

REGULATIONS - 2011

DEPARTMENT OF

ELECTRONICS AND COMMUNICATION ENGINEERING

CURRICULUM AND SYLLABI OF

M.E. – EMBEDDED SYSTEMS TECHNOLOGIES

NATIONAL ENGINEERING COLLEGE, K.R.NAGAR, KOVILPATTI

(An Autonomous Institution Affiliated to Anna University Chennai)

M.E. (EMBEDDED SYSTEMS TECHNOLOGIES)

CURRICULUM AND SYLLABUS (FULL TIME)

SEMESTER I

S.NO.	COURSE	COURSE TITLE	L	Т	Р	С
	CODE					
1	MMA102	Applied Mathematics for Electrical Engineers	3	1	0	4
		(Common to M.E EST, M.E HVE and M.E C&I)				
2	MES101	Real Time Systems	3	0	0	3
3	MES102	Mixed Signal Processor	3	0	0	3
4	MES103	Advanced Computer Architecture	3	0	0	3
5	MES104	Modern Digital System Design	3	0	0	3
6	MES002	Elective – I	3	0	0	3
		Design of Embedded Control System				
PRAC	ΓICAL			•		•
7	MES131	Embedded System Laboratory	0	0	4	2
	·		Total Credits			21

SEMESTER II

S.NO.	COURSE	COURSE TITLE	L	Т	Р	С
	CODE					
1	MES201	Low Power CISC Microcontroller	3	0	0	3
2	MES202	RTOS and its Applications	3	0	0	3
3	MES203	Embedded Networking	3	0	0	3
4	MES204	VLSI Architecture and Design Methodologies	3	0	0	3
5	MES005	Elective – II				
		Embedded Linux	3	0	0	3
6	MES010	Elective – III Distributed Embedded Computing	3	0	0	3
PRAC	ΓICAL					
7	MES231	Advanced Embedded System Laboratory	0	0	4	2
	1	1	Total Credits			20

SEMESTER III

S.NO.	COURSE CODE	COURSE TITLE	L	Т	Р	С
1	E4	Elective IV	3	0	0	3
2	E5	Elective V	3	0	0	3
3	E6	Elective VI	3	0	0	3
4	MES331	Project work phase – I	0	0	12	6
	Total Credits				15	

SEMESTER IV

S.NO.	COURSE CODE	COURSE TITLE	L	Т	Р	С
1	MES431	Project work phase – II	0	0	24	12
			Total Credits			

TOTAL CREDITS TO BE EARNED FOR THE AWARD OF THE DEGREE - 68

LIST OF ELECTIVES

S.NO.	COURSE CODE	COURSE TITLE	L	Т	Р	С
1	MES001	Software Technology for Embedded Systems	3	0	0	3
2	MES002	Design of Embedded Control System	3	0	0	3
3	MES003	Embedded Communication and Software Design	3	0	0	3
4	MES004	Embedded Wireless Sensor Networks	3	0	0	3
5	MES005	Embedded Linux	3	0	0	3
6	MES006	RISC Processor Architecture and Programming	3	0	0	3
7	MES007	Advanced Embedded Systems	3	0	0	3
8	MES008	Cryptography and Network Security	3	0	0	3
9	MES009	Computers in Networking and Digital Control	3	0	0	3
10	MES010	Distributed Embedded Computing	3	0	0	3

NATIONAL ENGINEERING COLLEGE, K.R.NAGAR, KOVILPATTI

(An Autonomous Institution Affiliated to Anna University Chennai)

M.E. (EMBEDDED SYSTEMS TECHNOLOGIES)

CURRICULUM AND SYLLABUS (PART TIME)

SEMESTER I

S.NO.	COURSE CODE	COURSE TITLE	L	Т	Р	С
1	MMA102	Applied Mathematics for Electrical Engineers (Common to M.E EST, M.E HVE and M.E C&I)	3	1	0	4
2	MES101	Real Time Systems	3	0	0	3
3	MES102	Mixed Signal Processor	3	0	0	3
Total Credits						

SEMESTER - II

S.NO.	COURSE CODE	COURSE TITLE	L	Т	Р	С
1	MES201	Low Power CISC Microcontroller	3	0	0	3
2	MES202	RTOS and its Applications	3	0	0	3
3	MES203	Embedded Networking	3	0	0	3
	•	·	Total Credits			9

SEMESTER - III

S.NO.	COURSE CODE	COURSE TITLE	L	Т	Р	С
1	MES103	Advanced Computer Architecture	3	0	0	3
2	MES104	Modern Digital System Design	3	0	0	3
3	MES002	Elective – I Design of Embedded Control System	3	0	0	3
Practica	1					
4	MES131	Embedded System Laboratory	0	0	4	2
			Total Credits			11

SEMESTER - IV

S.NO.	COURSE CODE	COURSE TITLE	L	Т	Р	С	
1	MES204	VLSI Architecture and Design Methodologies	3	0	0	3	
2	MES005	Elective – II					
		Embedded Linux	3	0	0	3	
3	MES010	Elective – III					
		Distributed Embedded Computing	3	0	0	3	
Practica	ıl						
4	MES231	Advanced Embedded System Laboratory	0	0	4	2	
			Total Credits 11				

SEMESTER V

S.NO.	COURSE CODE	COURSE TITLE	L	Т	Р	С
1	E4	Elective IV	3	0	0	3
2	E5	Elective V	3	0	0	3
3	E6	Elective VI	3	0	0	3
4	MES331	Project work phase – I	0	0	12	6
		Total Credits				15

SEMESTER VI

S.NO.	COURSE CODE	COURSE TITLE	L	Т	Р	С	
1	MES431	Project Work Phase – II	0	0	24	12	
		Total Credits					

LIST OF ELECTIVES

S.NO.	COURSE CODE	COURSE TITLE	L	Т	Р	С
1	MES001	Software Technology for Embedded Systems	3	0	0	3
2	MES002	Design of Embedded Control System	3	0	0	3
3	MES003	Embedded Communication and Software Design	3	0	0	3
4	MES004	Embedded Wireless Sensor Networks	3	0	0	3
5	MES005	Embedded Linux	3	0	0	3
6	MES006	RISC Processor Architecture and Programming	3	0	0	3
7	MES007	Advanced Embedded Systems	3	0	0	3
8	MES008	Cryptography and Network Security	3	0	0	3
9	MES009	Computers in Networking and Digital Control	3	0	0	3
10	MES010	Distributed Embedded Computing	3	0	0	3

TOTAL CREDITS TO BE EARNED FOR THE AWARD OF THE DEGREE - 68

MMA102APPLIED MATHEMATICS FOR ELECTRICALLTPCENGINEERS3104(Common to M.E EST, M.E HVE and M.E C&I)

AIM

To gain knowledge on applied mathematics for electrical engineers

OBJECTIVE

- > To learn the concepts of matrix theory
- To understand simplex method, two phase method and graphical solution in linear programming.
- > To learn moment generating functions and one dimensional random variables.
- > To understand queueing models and computation methods in engineering

UNIT I ADVANCED MATRIX THEORY

Eigen-values using QR transformations - Generalized eigen vectors - Canonical forms - Singular value decomposition and applications - Pseudo inverse - Least square approximations.

UNIT II LINEAR PROGRAMMING

Formulation - Graphical Solution - Simplex Method - Two Phase Method - Transportation and Assignment Problems.

UNIT III ONE DIMENSIONAL RANDOM VARIABLES

Random variables - Probability function - moments - moment generating functions and their properties - Binomial, Poisson, Geometric, Uniform, Exponential, Gamma and Normal distributions - Function of a Random Variable.

UNIT IV QUEUEING MODELS

Poisson Process - Markovian queues - Single and Multi Server Models - Little's formula - Machine Interference Model - Steady State analysis - Self Service queue.

UNIT V COMPUTATIONAL METHODS IN ENGINEERING

Boundary value problems for ODE - Finite difference methods - Numerical solution of PDE - Solution of Laplace and Poisson equations - Liebmann's iteration process - Solution of heat conduction equation by Schmidt explicit formula and Crank - Nicolson implicit scheme - Solution of wave equation.

L=45; T=15; TOTAL: 60 PERIODS

REFERENCES

- 1. Bronson, R., Matrix Operation, Schaum's outline series, McGraw Hill, New York, 1989.
- 2. Taha, H. A., Operations Research: An Introduction, Seventh Edition, Pearson Education Edition, Asia, New Delhi (2002).
- 3. R. E. Walpole, R. H. Myers, S. L. Myers, and K. Ye, Probability and Statistics for Engineers & Scientists, Asia, 8th Edition, (2007).
- 4. Donald Gross and Carl M. Harris, Fundamentals of Queueing theory, 2nd edition, John Wiley and Sons, New York (1985).
- 5. Grewal, B.S., Numerical methods in Engineering and Science, 7th edition, Khanna Publishers, 2009.

9

9

9

9

MES101

REAL TIME SYSTEMS

AIM

To expose the students to the fundamentals of Real Time Systems, its communication and evaluation techniques

OBJECTIVE

- > To introduce real time computing and scheduling algorithms.
- \geq To understand the programming languages and their tools for real time systems.
- \triangleright To study real time communication concepts and fault tolerant techniques.
- \triangleright To study the evaluation techniques of Real time systems.

UNIT I **INTRODUCTION**

Introduction - Issues in Real Time Computing - Structure of a Real Time System - Task classes -Performance Measures for Real Time Systems - Estimating Program Run Times - Task Assignment and Scheduling - Classical Uniprocessor scheduling algorithms - Uniprocessor scheduling of IRIS tasks - Task assignment - Mode changes and Fault Tolerant Scheduling.

UNIT II PROGRAMMING LANGUAGES AND TOOLS

Programming Languages and Tools - Desired language characteristics - Data typing - Control Facilitating Hierarchical Decomposition, Packages, Run time (Exception) Error structures handling - Overloading and Generics - Multitasking - Low level programming - Task Scheduling -Timing Specifications - Programming Environments - Run - time support.

REAL TIME DATABASES UNIT III

Real time Databases - Basic Definition, Real time Vs General Purpose Databases, Main Memory Databases, Transaction priorities, Transaction Aborts, Concurrency control issues, Disk Scheduling Algorithms, Two - phase Approach to improve Predictability - Maintaining Serialization Consistency - Databases for Hard Real Time Systems.

UNIT IV COMMUNICATION

Real - Time Communication - Communications media, Network Topologies Protocols, Fault Tolerant Routing. Fault Tolerance Techniques - Fault Types - Fault Detection., Fault Error containment Redundancy - Data Diversity - Reversal Checks - Integrated Failure handling.

UNIT V **EVALUATION TECHNIQUES**

Reliability Evaluation Techniques - Obtaining parameter values, Reliability models for Hardware Redundancy - Software error models. Clock Synchronization - Clock, A Nonfault - Tolerant Synchronization Algorithm - Impact of faults - Fault Tolerant Synchronization in Hardware - Fault Tolerant Synchronization in software.

TOTAL : 45 PERIODS

9

9

9

REFERENCES

- 1. C.M. Krishna, Kang G. Shin, "Real Time Systems", McGraw Hill International Editions, 1997.
- 2. Rajib Mall, "Real-time systems: theory and practice", Pearson Education, 2007.
- 3. Peter D.Lawrence, "Real Time Micro Computer System Design An Introduction", McGraw Hill, 1988.
- 4. Stuart Bennett, "Real Time Computer Control An Introduction", Prentice Hall of India, 1998.
- 5. S.T. Allworth and R.N.Zobel, "Introduction to real time software design", Macmillan, 2nd Edition, 1987.
- 6. R.J.A Buhur, D.L Bailey, "An Introduction to Real Time Systems", Prentice Hall International, 1999.
- 7. Philip.A.Laplante, "Real Time System Design and Analysis", Prentice Hall of India, 3rd Edition, April 2004.

MES102

AIM

To impart knowledge on Mixed Signal Processor, its architecture and interfacing.

OBJECTIVE

- To understand the processor classification and its architecture's.
- To understand the architecture of MSP430 Processor.
- To study the interfacing techniques of the processor.
- To study the on-chip peripheral's and special features of the processor.

UNIT I INTRODUCTION

Embedded System Definition – Processor classification – RISC and CISC architecture comparison - Low Power embedded systems – Target applications.

UNIT II ARCHITECTURE

MSP430 RISC CPU architecture - On-chip peripherals - low power RF capabilities - Instruction set- Clock system- Memory subsystem-Key differentiating factors between different MSP430 families

UNIT III INTERFACING TECHNIQUES

Interrupt handling mechanism – Interfacing techniques - Digital I/O ports - Interfacing LED, LCD, External memory- Seven segment LED modules interfacing. Example – Real Time Clock.

UNIT IV ON CHIP PERIPHERALS

On chip peripherals - Watchdog Timer – Comparator - Op-Amp - Timers - Real Time Clock (RTC) – ADC – DAC - LCD - DMA.

UNIT V SPECIAL FEATURES

Low power features of MSP430 - Clock system – low power modes - Clock request feature - programming using C and assembly language - mixing scheme of the MSP430 pins.

TOTAL : 45 PERIODS

REFERENCES

- 1. Raj Kamal, "Microcontrollers: Architecture, Programming, Interfacing and System Design" Pearson Education, 2005.
- 2. John Davies, "MSP430 Microcontroller Basics", Elsevier, 2008.
- 3. MSP430 Teaching CD-ROM, Texas Instruments, 2008 (http://www.uniti.in).
- 4. Jerry Luecke, "Analog and Digital Circuits for Electronic Control System Applications", Elsevier, 2010.
- 5. Chris Nagy, "Embedded Systems Design Using TI MSP 430 series", Elsevier, 2008.

9

9

9

9

To learn advanced computer architecture and their processing.

OBJECTIVE

- To learn the concepts of parallel computing.
- > To study the program portioning, scheduling and performance analysis.
- > To understand the data path design and memory organization.
- > To understand parallel processing and architectures.

UNIT I PARALLEL COMPUTING

Computing and Computers - Parallel Computer models - the state of computing - Multiprocessors and Multicomputers - Multivectors - and SIMD computers - superscalar and vector processors - PRAM and VLSI models - Program and network properties - Conditions of parallelism.

UNIT II SCHEDULING AND PERFORMANCE ANALYSIS

Speed up techniques - Program partitioning and scheduling - Program flow mechanisms - System interconnect architectures - Principles of scalable performance - performance matrices and measures - Parallel processing applications - speedup performance laws - scalability analysis and approaches.

UNIT III DATA PATH DESIGN

Fixed point and floating point arithmetic - Control design - Hardwired and micro programmed control - CPU control unit - memory hierarchy technology - virtual memory technology - cache memory organizations - shared memory organizations

UNIT IV PARALLEL COMPUTER ARCHITECTURES

Pipeline design and performance - Instruction pipeline - Pipeline control - Superscalar processing - RISC and CISC processors - Parallel and scalable architectures - Multithreaded data flow architectures.

UNIT V PARALLEL PROCESSING

Parallel models - Languages and compilers - Parallel program development and environments - UNIX for parallel computers

TOTAL: 45 PERIODS

REFERENCES

- 1. Kai Hwang "Advanced Computer Architecture". McGraw Hill International 2001.
- 2. Dezso Sima, Terence Fountain, Peter Kacsuk, "Advanced computer Architecture A design Space Approach". Pearson Education, 2003.
- 3. David E. Culler, Jaswinder Pal Singh with Anoop Gupta "Parallel Computer Architecture", Elsevier, 2004.
- 4. John P. Shen. "Modern processor design Fundamentals of super scalar processors", Tata McGraw Hill 2003.
- 5. Sajjan G. Shiva "Advanced Computer Architecture", Taylor & Francis, 2008.
- 6. V.Rajaraman, C.Siva Ram Murthy, "Parallel Computers- Architecture and Programming", Prentice Hall India, 2008.
- 7. John L. Henhnessy, David A. Petterson, "Computer Architecture: A Quantitative Approach", 4th Edition, Elsevier, 2007.

9

9

9

9 g -

MES104

9

9

9

9

AIM

To understand the models and schemes of digital system design

OBJECTIVE

- To realize Mealy and Moore model networks
- To learn the design techniques of fundamental mode asynchronous circuits
- To study the various fault models of system design
- To impart knowledge on programmable logic devices and advanced PLD

UNIT I REALIZATION OF MEALY AND MOORE MODEL NETWORKS

Analysis of Clocked Mealy and Moore model Networks, Modelling of Mealy and Moore network -State Stable Assignment and Reduction - Design of Mealy and Moore model networks - Design of Iterative Circuits - ASM Chart - ASM Realizations using Discrete gates, Multiplexers, PLA, PROMs.

UNIT II DESIGN OF FUNDAMENTAL MODE ASYNCHRONOUS CIRCUITS 9

Fundamental mode Asynchronous Sequential Circuit analysis –Excitation Table, Transition Table, State Table, Flow Table and its Reduction - Races, Primitive Flow Table - State Assignment Problem - Design of Fundamental mode asynchronous sequential circuits – Timing Hazards - Design of a Microcontroller CPU,

UNIT III FAULT MODELS AND DFT SCHEMES

Stuck at Models, Fault Table method - Path Sensitization Method - Boolean Difference Method - Kohavi Algorithm - Tolerance Techniques - The Compact Algorithm - Practical PLA's - Fault in PLA - Test Generation - Masking Cycle - DFT Schemes - Built-in Self Test.

UNIT IV PROGRAMMABLE LOGIC DEVICES

Programming Techniques -Re-Programmable Devices Architecture- Function blocks, I/O blocks, Interconnects, Realize combinational, Arithmetic, Sequential Circuit with Programmable Logic Array; Architecture and application of Field Programmable Logic Sequence.

UNIT V ADVANCED PROGRAMMABLE LOGIC DEVICES

Architecture of GAL, EPLD, EPLA, PEEL, PML; PROM – Altera CPLD – Xilinx XC9500 CPLD - FPGA - Xilinx FPGA - Xilinx 4000

TOTAL: 45 PERIODS

REFERENCES

- 1. Donald G. Givone, "Digital principles and Design", Tata McGraw Hill 2002.
- 2. Stephen Brown and Zvonk Vranesic, "Fundamentals of Digital Logic with VHDL Deisgn", Tata McGraw Hill, 2002.
- 3. Mark Zwolinski, "Digital System Design with VHDL", Pearson Education, 2004.
- 4. Parag K Lala, "Digital System design using PLD", BS Publications, 2003.
- 5. John M Yarbrough, "Digital Logic applications and Design", Thomson Learning, 2001.
- 6. Nripendra N Biswas, "Logic Design Theory", Prentice Hall of India, 2001.
- 7. Charles H. Roth Jr., "Fundamentals of Logic design", Thomson Learning, 2004.

MES131 EMBEDDED SYSTEM LABORATORY L T P C

2

AIM

To impart knowledge on different embedded processors, their architectures and programming.

OBJECTIVE

- > To understand the Architecture of MSP430 chip using Cross Works Development Environment.
- To interface MSP chip with interfacing modules to develop single chip solutions on Cross Works Development Environment.
- To understand the Architecture of ARM7 Processor using Cross Works Development Environment.
- To understand the use of RTOS with ARM7 Processor using Cross Works Development Environment.

LIST OF EXPERIMENTS

PART- I

Write programs to understand the Architecture of MSP430 chip using Cross Works Development Environment.

- 1. Data Transfer Block move, Exchange, Sorting, Finding largest element in an array.
- 2. Arithmetic Instructions Addition/subtraction, multiplication and division,
- 3. Square, Cube (16 bits Arithmetic operations bit addressable).
- 4. Counters design.
- 5. Boolean & Logical Instructions (Bit manipulations).
- 6. Conditional CALL & RETURN.
- 7. Code conversion: BCD ASCII; ASCII Decimal; Decimal ASCII; HEX Decimal and Decimal HEX.
- 8. Programs to generate delay, programs using serial port and on-Chip timer / counter.

PART- II

Write programs to interface MSP chip with Interfacing modules to develop single chip solutions on

Cross Works Development Environment.

- 9. Write a Program to test the ADC Signal by using 8-LEDs array.
- 10. Write a program to study on board relay.
- 11. External ADC and Temperature control interface to MSP
- 12. Stepper and Bi directional DC motor control interface to MSP
- 13. Alphanumeric LCD panel and Hex keypad input interface to MSP.
- 14. Generate different waveforms Sine, Square, Triangular and Ramp using DAC interface to MSP.
- 15. Simple Calculator Using 6 digit seven segment display and Hex Keyboard

PART- III

Write programs to understand the Architecture of ARM7 Processor using Cross Works

Development Environment.

- 16. Simple Assembly Program for
 - a. Addition | Subtraction | Multiplication | Division
- 17. 8 Bit LED and Switch Interface
- 18. Buzzer Relay and Stepper Motor Interface
- 19. Time delay program using built in Timer / Counter feature
- 20. External Interrupt
- 21. Displaying a number in 7-Segment Display
- 22. 4x4 Matrix Keypad Interface
- 23. Multi digit Seven segment display
- 24. Displaying a message in a 2 line x 16 Characters LCD display
- 25. ADC and Temperature sensor LM 35 Interface
- 26. I2C Interface 7 Segment display
- 27. I2C Interface Serial EEPROM
- 28. Transmission from Kit and reception from PC using Serial Port
- 29. Generation of PWM Signal

PART- IV

Write programs to understand the use of RTOS with ARM7 Processor using Cross Works

Development Environment.

- 30. Blinking two different LEDs at different timings.
- 31. Displaying two different messages in LCD display in two lines
- 32. Sending messages to mailbox by one task and reading the message from mailbox by another task
- 33. Sending message to PC through serial port by three different tasks on priority Basis
- 34. Reading temperature from LM35 chip and any other external element at different timings using RTOS.

To learn the concept of CISC architecture and peripheral interfacing

OBJECTIVE

- > To learn the basic concept of microcontrollers.
- > To study the basic processor core of RL78 and their software development tools.
- > To study the interrupts and interrupt processing activities of RL78.
- > To understand the basic concepts of serial communication and Timers.

UNIT I MICROCONTROLLER CONCEPTS

Microcontroller-based Embedded System - Infrastructure: Power, Clock, and Reset - Interfacing with Digital Signals: GPIO, Driving a Common Signal with Multiple MCUs, Scanning Matrix Keypads, Driving Motors and Coils - Interfacing with Analog Signals : Multi-bit Analog to Digital Conversion-Introduction about RENESAS Family of microcontrollers.

UNIT II RL78 PROCESSOR CORE

RL78 Processor Core basics – Block Diagram - Data flow diagram within core – Instruction set-Addressing Modes- RL78 Pipeline structure – Implementation of C language statements in RL78Assembly language- - Programming Examples- Software development tools for RL78.

UNIT III RL78 INTERRUPTS

RL78 Interrupt mechanisms- Interrupt processing activities: both hardware and software with ISR examples- Interrupt Characteristics- RL78 Interrupt vector table-Concurrent Interrupt - External Interrupt-Program using two ISRs to implement a Quadrature shaft encoder.

UNIT IV SERIAL COMMUNICATION

Basic Concepts: Synchronous, Asynchronous – Example Protocols: CSI, UART, I²C - Serial Array Unit Concepts : CSI Mode , UART Mode , Simplified IIC Mode - Serial Communications Device Driver Code - Programming Examples for serial communication.

UNIT V TIMER PERIPHERALS

Basic Concepts: - Interval Timer - Timer Array Unit: Independent Channel Operation Modes, Simultaneous Channel Operation Modes - Using PWM Mode to Control a Servo Motor - Programming Examples.

REFERENCES

- 1. G.Alexander, M.Conrad, "Embedded Systems using Renesas RL78 Microcontroller", Micrium Press, 2012.
- 2. J.Ganssle, "The Art of Designing Embedded systems ", Newnes, 2008.
- 3. RL78 Family User's Manual: RENESAS Electronics, 2011.
- 4. www.renesassingapore.com

9

9

9

TOTAL: 45 PERIODS

9

MES202

AIM

To understand the real time operating system concepts, exemplary RTOS and their application domains.

OBJECTIVE

- To review the concepts of basic RTOS systems
- > To learn the models of distributed operating systems and design strategies.
- > To study the real time kernel and various real time models.
- > To know the application domains of RTOS.

UNIT -I REVIEW OF OPERATING SYSTEMS

Basic Principles - System Calls - Files - Processes - Design and Implementation of processes - Communication between processes - Operating System structures.

UNIT – II DISTRIBUTED OPERATING SYSTEMS

Topology - Network types - Communication - RPC - Client server model -Distributed file system - Design strategies.

UNIT – III REAL TIME MODELS AND LANGUAGES

Event Based - Process Based and Graph based Models - Petrinet Models - Real Time Languages - RTOS Tasks - RT scheduling - Interrupt processing - Synchronization - Control Blocks - Memory Requirements.

UNIT – IV REAL TIME KERNEL

Principles - Design issues - Polled Loop Systems - RTOS Porting to a Target -Comparison and study of various RTOS like QNX - VX works - PSOS - C Executive - Case studies.

UNIT – V RTOS APPLICATION DOMAINS

RTOS for Image Processing - Embedded RTOS for voice over IP - RTOS for fault Tolerant Applications - RTOS for Control Systems.

TOTAL: 45 PERIODS

REFERENCES:

- 1. Herma K., "Real Time Systems Design for distributed Embedded Applications", Kluwer Academic, 1997.
- 2. Charles Crowley, "Operating Systems-A Design Oriented approach" McGraw Hill 1997.
- 3. C.M. Krishna, Kang, G.Shin, "Real Time Systems", McGraw Hill, 1997.
- 4. Raymond J.A.Bhur, Donald L.Bailey, "An Introduction to Real Time Systems", PHI 1999.
- 5. Raj Kamal, "Embedded Systems- Architecture, Programming and Design", Tata McGraw Hill, 2006.

9

9

9

9

MES203 EMBEDDED NETWORKING

LTPC 3 0 0 3

AIM

To learn the wired and wireless embedded networking strategies.

OBJECTIVE

- \geq To study the embedded communication protocols.
- \triangleright To study the USB and CAN bus and their interfacing.
- \triangleright To learn the basics of Ethernet.
- \triangleright To understand the embedded Ethernet and wireless embedded networking.

UNIT – I EMBEDDED COMMUNICATION PROTOCOLS

Embedded Networking: Introduction-Serial/Parallel Communication - Serial communication protocols-RS232 standard - RS485 - Synchronous Serial Protocols - Serial Peripheral Interface (SPI) - Inter Integrated Circuits (I²C)- PC Parallel port programming -ISA/PCI Bus protocols

UNIT - II USB AND CAN BUS

USB bus - Introduction - Speed Identification on the bus - USB States - USB bus communication: Packets -Data flow types-Enumeration-Descriptors-ARM Microcontroller USB Interface Programs -CAN Bus - Introduction - Frames –Bit stuffing-Types of errors Nominal Bit Timing - ARM Microcontroller CAN Interface Programs - A simple application Program with CAN and ARM Microcontroller

UNIT – III ETHERNET BASICS

Elements of a network- Inside Ethernet- Building a Network: Hardware options-Cables, Connections and network speed- Design choices: Selecting components Ethernet Controllers - Using the internet in local and internet communications - Inside the Internet protocol- A simple application Program with Ethernet and ARM Microcontroller

UNIT – IV EMBEDDED ETHERNET

Exchanging messages using UDP and TCP - Serving web pages with Dynamic Data -Serving web pages that respond to user Input - Email for Embedded Systems - Using FTP- Keeping Devices and Network secure.

UNIT – V WIRELESS EMBEDDED NETWORKING

Wireless sensor networks- Introduction - Applications - Network Topology - Localization-Time Synchronization- Energy efficient MAC protocols-SMAC - Energy Efficient and robust routing - Data Centric routing

REFERENCES:

- 1. Frank Vahid, Givargis 'Embedded Systems Design: A Unified Hardware/Software Introduction', Wiley Publications, 2001.
- 2. Jan Axelson, 'Parallel Port Complete', Penram publications, 1997.
- 3. Dogan Ibrahim, 'Advanced PIC microcontroller projects in C', Elsevier, 2008.
- 4. Jan Axelson 'Embedded Ethernet and Internet Complete', Penram publications, 2003.
- 5. Bhaskar Krishnamachari, 'Networking wireless sensors', Cambridge press 2005.

9

9

9

9

9

TOTAL: 45 PERIODS

MES204 VLSI ARCHITECTURE AND DESIGN METHODOLOGIES L Т Р С

AIM

To impart knowledge on VLSI architecture and design methodologies.

OBJECTIVE

- \geq To study analog and high speed VLSI technology
- To learn programmable ASIC design software. \geq
- \triangleright To study the concepts of logic synthesis, simulation and testing.

UNIT I INTRODUCTION

Overview of digital VLSI design methodologies - Trends in IC Technology - Advanced Boolean algebra - Shannon's expansion theorem - Consensus theorem - Octal designation- Run measure - Buffer gates - Gate expander - Reed Muller expansion -Synthesis of multiple output combinational logic circuits by product map method -Design of static hazard free, dynamic hazard free logic circuits.

UNIT II ANALOG VLSI AND HIGH SPEED VLSI

Introduction to analog VLSI - Realization of neural networks and switched capacitor filters -Submicron technology and Gas VLSI Technology.

UNIT III PROGRAMMABLE ASICS

Anti fuse - static RAM - EPROM and technology - PREP bench marks - Actel ACT Xilinx LCA - Altera flex - Altera MAX DC & AC inputs and outputs - Clock and power inputs - Xilinx I/O blocks.

UNIT IV PROGRAMMABLE ASIC DESIGN SOFTWARE

Actel ACT - Xilinx LCA - Xilinx EPLD - Altera MAX 5000 and 7000 - Altera MAX 9000 -design systems - logic synthesis - half gate - schematic entry - Low level design language -PLA tools - EDIF - CFI design representation.

UNIT V LOGIC SYNTHESIS, SIMULATION AND TESTING

Basic features of VHDL language for behavioral modeling and simulation - Summary of VHDL data types - Dataflow and structural modeling - VHDL and logic synthesis - Circuit and layout verification - Types of simulation - Boundary scan test - Fault simulation - Automatic test pattern generation - design examples.

TOTAL: 45 PERIODS

REFERENCES:

- 1. William I. Fletcher, "An Engineering Approach to Digital Design", Prentice Hall of India, 1980.
- 2. Amar Mukharjee,"Introduction to NMOS and CMOS VLSI System Design", Prentice Hall, 1986.
- 3. M.J.S. Smith, "Application specific integrates circuits", Addison Wesley LongmanInc, 1997.
- 4. Frederick J.Hill and Gerald R.Peterson, "Computer Aided Logical Design with emphasis on VLSI" 1993.

9

9

9

9

9

3

0 0

MES231 ADVANCED EMBEDDED SYSTEM LABORATORY L T P C

AIM

To understand the architecture of embedded processors and to design simple systems.

OBJECTIVE

- To understand the architecture and developing simple systems which contains both Analog and Digital logic blocks.
- > To understand the architecture of RENESAS and interfacing external peripherals.
- > To understand the architecture of OMAP and interfacing external peripherals.

PART I PSoC

Experiments to understand the architecture and developing simple systems which contains both Analog and Digital logic blocks.

- 1 LED Blinking : Software Control
- 2 LED Blinking : Hardware Control
- 3 LED Blinking : PWM Control
- 4 Moving LCD Display
- 5 Interrupt generation using timer
- 6 ADC-LCD Interface
- 7 Capsense Buttons and Sliders test

PART II RENESAS

Experiments to understand the architecture and interfacing external peripherals.

- 1. Measure room temperature and display the same in a LCD with keyboard interaction
- 2. Design a real time clock using 7- segment displays and create keyboard interaction for the operations.
- 3. Create a Foreground background application system using interrupt structure of RL78
- 4. Design an embedded system to measure the unknown signal frequency using timer/counter of RL78
- 5. Generate 3-phase PWM signals and demonstrate the utility of PWM with high bright LED lights.

PART III OMAP

Experiments to understand the architecture and interfacing external peripherals.

To study the software technologies and programming concepts of embedded system

OBJECTIVE

- \geq To understand the programming concepts of embedded systems
- \triangleright To learn embedded C programming concepts
- \geq To study the design and analysis of software development process
- \geq To study web architectural framework protocols and unified modeling language

PROGRAMMING EMBEDDED SYSTEMS UNIT I

Embedded Program - Role of Infinite loop - Compiling, Linking and locating downloading and debugging - Emulators and simulators processor – External peripherals - Types of memory -Memory testing - Flash Memory.

UNIT II C AND ASSEMBLY

Overview of Embedded C - Compilers and Optimization - Programming and Assembly Register usage conventions - typical use of addressing options - instruction sequencing procedure call and return - parameter passing - retrieving parameters - everything in pass by value - temporary variables

EMBEDDED PROGRAM AND SOFTWARE DEVELOPMENT UNIT III. PROCESS

Program Elements - Queues - Stack- List and ordered lists-Embedded programming in C++ - Inline Functions and Inline Assembly - Portability Issues - Embedded Java Software Development process: Analysis - Design- Implementation - Testing - Validation- Debugging - Software maintenance

UNIT IV **UNIFIED MODELLING LANGUAGE**

Object State Behaviour - UML State charts - Role of Scenarios in the Definition of Behaviour -Timing Diagrams - Sequence Diagrams - Event Hierarchies - Types and Strategies of Operations -Architectural Design in UML Concurrency Design - Representing Tasks - System Task Diagram -Concurrent State Diagrams - Threads. Mechanistic Design - Simple Patterns

WEB ARCHITECTURAL FRAMEWORK FOR EMBEDDED SYSTEM 9 UNIT V

Basics - Client/sever model- Domain Names and IP address – Internet Infrastructure and Routing - URL - TCP/IP protocols - Embedded as Web Client - Embedded Web servers - HTML - Web security - Case study Web-based Home Automation system.

TOTAL: 45 PERIODS

- REFERENCES 1. David E.Simon, "An Embedded Software Primer", Pearson Education, 2003.
 - 2. Michael Barr, "Programming Embedded Systems in C and C++", Oreilly, 2003.
 - 3. H.M. Deitel, P.J.Deitel, A.B. Golldberg "Internet and World Wide Web How to Program" 3rd Edition, Pearson Education, 2008.
 - 4. Bruce Powel Douglas, "Renal-Time UML: Developing Efficient Object for Embedded Systems", 2nd edition, Addison-Wesley, 1999.
 - 5. Daniel W.lewis, "Fundamentals of Embedded Software where C and Assembly meet", PHI 2002.
 - 6. Raj Kamal, "Embedded Systems- Architecture, Programming and Design", Tata McGraw Hill, 2006.

9

9

Λ

3

9

9

L Т Р С

L T P C 3 0 0 3

AIM

To learn the methods of designing and interfacing embedded systems.

OBJECTIVE

- > To learn the basics of embedded system hardware organization.
- > To understand the basics of real time operating system
- > To learn the design methodologies and hardware and software interface
- To study the designing concepts of software for embedded system, basics of exemplary RTOS

UNIT I EMBEDDED SYSTEM ORGANIZATION

Embedded computing - characteristics of embedded computing applications - embedded system design challenges; Build process of Real time Embedded system -Selection of processor; Memory; I/O devices-Rs-485, MODEM, Bus Communication system using I²C, CAN, USB buses, 8 bit -ISA, EISA bus;

UNIT II REAL-TIME OPERATING SYSTEM

Introduction to RTOS; RTOS- Inter Process communication, Interrupt driven Input and Output – Non maskable interrupt, Software interrupt; Thread - Single, Multithread concept; Multitasking Semaphores.

UNIT III INTERFACE WITH COMMUNICATION PROTOCOL

Design methodologies and tools - design flows - designing hardware and software Interface - system integration; SPI, High speed data acquisition and interface-SPI read/write protocol, RTC interfacing and programming;

UNIT IV DESIGN OF SOFTWARE FOR EMBEDDED CONTROL

Software abstraction using Mealy-Moore FSM controller, Layered software development, Basic concepts of developing device driver - SCI - Software - interfacing & porting using standard C & C++; Functional and performance Debugging with benchmarking Real- time system software - Survey on basics of contemporary RTOS – VX Works, UC/OS-II.

UNIT V CASE STUDIES WITH EMBEDDED CONTROLLER

Programmable interface with A/D & D/A interface; Digital voltmeter, control- Robot system; - PWM motor speed controller, serial communication interface.

TOTAL: 45 PERIODS

9 m

9

9

9

REFERENCES

- 1. Steven F. Barrett, Daniel J. Pack, "Embedded Systems Design and Applications with the 68HC12 and HCS12", Pearson Education, 2008.
- 2. Raj Kamal, "Embedded Systems- Architecture, Programming and Design" Tata McGraw Hill,2006.
- 3. Micheal Khevi, "The M68HC11 Microcontroller application in control, Instrumentation & Communication", PH NewJersy, 1997.
- 4. Muhammad Ali Mazidi, Rolin D. Mckinlay, Danny Causey, "PIC Microcontroller and Embedded Systems- Using Assembly and C for PIC18", Pearson Education, 2008.
- 5. Daniel W. Lewis, "Fundamentals of Embedded Software", Prentice Hall India, 2004.
- 6. Jack R Smith "Programming the PIC microcontroller with MBasic" Elsevier, 2007.
- 7. Keneth J.Ayala, "The 8086 Microprocessor: Programming & Interfacing the PC", Thomson India edition, 2007.

EMBEDDED COMMUNICATION AND SOFTWARE **MES003** DESIGN

LΤ Р С 3 0 0 3

AIM

To study the methodologies of embedded communication and software design

OBJECTIVE

- To review the basics of OSI reference model and basics of OS and RTOS \triangleright
- \triangleright To study routers, switch, protocol and debugging concepts
- \triangleright To study the concepts of structure and tables.
- \geq To understand the management of devices, timer, buffer and router.
- \triangleright To learn multi board communication software design.

UNIT I INTRODUCTION

Communication Devices - Communication Echo System - Design Consideration - Host Based Communication - Embedded Communication System - OS Vs RTOS.

SOFTWARE PARTITIONING UNIT II

Limitation of strict Layering - Tasks & Modules - Modules and Task Decomposition Layer2 Switch - Layer3 Switch / Routers - Protocol Implementation - Management Types- Debugging Protocols.

UNIT III TABLE & DATA STRUCTURES

Partitioning of Structures and Tables - Implementation - Speeding Up access - Table Resizing -Table access routines - Buffer and Timer Management - Third Party Protocol Libraries.

MANAGEMENT SOFTWARE UNIT IV

Device Management - Management Schemes - Router Management - Management of Sub System Architecture - Device to manage configuration - System Start up and configuration.

UNIT V **MULTI BOARD COMMUNICATION SOFTWARE DESIGN**

Multi Board Architecture - Single control Card and Multiple line Card Architecture -Interface for Multi Board software - Failures and Fault - Tolerance in Multi Board Systems - Hardware independent development - Using a COTS Board - Development Environment - Test Tools.

REFERENCES

- 1. Sridhar .T, "Designing Embedded Communication Software" CMP Books, 2003.
- 2. Comer.D, "Computer networks and Internet", Third Edition, Prentice Hall, 2008.
- 3. Raj Kamal, "Embedded Systems- Architecture, Programming and Design" Tata McGraw Hill, 2006.

9

9

9

9

TOTAL: 45 PERIODS

To study the concepts of embedded wireless sensor networks.

OBJECTIVES

- > To discuss about the Adhoc networks and applications of sensor networks
- > To implement the network architecture, operating systems and optimization goals.
- > To study about the protocols and sensors for wireless networks
- > To learn about the Smart sensors and Commercial motes for implementation

UNIT I FUNDAMENDALS OF WIRELESS SENSOR NETWORKS

Introduction – Sensor network application classes: System Evaluation metrices, Individual node evaluation metrices, Hardware capabilities, Challenges for Wireless Sensor Networks - Characteristics requirements - required mechanisms, Difference between mobile Adhoc and sensor networks

UNIT II NETWORK ARCHITECTURES AND DESIGN GOALS

Single-Node Architecture - Hardware Components, Energy Consumption of Sensor Nodes, Operating Systems and Execution Environments, Network Architecture - Sensor Network Scenarios, Optimization Goals and Figures of Merit, Gateway Concepts.

UNIT III NETWORK PROTOCOLS AND ROUTING

Physical Layer and Transceiver Design Considerations, MAC Protocols for Wireless Sensor Networks, Low Duty Cycle Protocols And Wakeup Concepts - S-MAC, The Mediation Device Protocol, Wakeup Radio Concepts, Address and Name Management, Assignment of MAC Addresses, Routing Protocols- Energy-Efficient Routing, Geographic Routing.

UNIT IV SMART SENSORS

Introduction to smart sensors – Evolution - Signal conditioning - Analog and Digital interface circuits – Components – General architecture of smart sensors – Humidity and Temperature sensors – Moisture sensors – Vibration sensors - Level sensors – Pressure sensors – Ultra sonic sensors – Pattern sensors – Vision sensors

UNIT V COMMERCIAL MOTES

Typical architecture of sensor motes – Components - RF mote – Mini mote – Mica mote – Micaz mote – Intel mote – Laser mote – CCR mote – Applications: Wildfire monitoring – Habitat monitoring.

REFERENCES:

- 1.Holger Karl & Andreas Willig, "Protocols And Architectures for Wireless Sensor Networks", John Wiley, 2005.
- 2. Feng Zhao & Leonidas J. Guibas, "Wireless Sensor Networks- An Information Processing Approach", Elsevier, 2007.
- 3. Kazem Sohraby, Daniel Minoli, & Taieb Znati, "Wireless Sensor Networks Technology, Protocols, and Applications", John Wiley, 2007.
- 4. Anna Hac, "Wireless Sensor Network Designs", John Wiley, 2003.
- 5. Bhaskar Krishnamachari, "Networking Wireless Sensors", Cambridge Press, 2005.
- 6. <u>www.smartsensors.com</u>
- 7. www.sick.com

10 ess

8

9

10

EMBEDDED LINUX

AIM

To study the basics of LINUX and to gain knowledge on Embedded LINUX

OBJECTIVE

- To review the basics of LINUX fundamentals \geq
- \triangleright To introduce embedded Linux and its concepts
- \triangleright To study the bootloader, role of bootloader and universal bootloader concepts.
- \triangleright To understand power management, interrupt management, timer management and device drivers.

UNIT I LINUX FUNDAMENTALS

Introduction to Linux - Basic Linux commands and concepts - Shells - Advanced shells and shell scripting - Linux File System: concepts, types, representation.

INTRODUCTION TO EMBEDDED LINUX UNIT II

Embedded Linux - Introduction - Advantages- Embedded Linux Distributions - Architecture -Linux kernel architecture - User space - linux startup sequence - GNU cross platform Tool chain

UNIT III BOOTLOADERS

Bootloader definition - role of bootloader - bootloader Challenges- Universal bootloader -Porting Universal bootloader - Device tree Blob

BOARD SUPPORT PACKAGE AND EMBEDDED STORAGE UNIT IV

Inclusion of BSP in kernel build procedure - - Memory Map - Interrupt Management - - Timers -UART - Power Management - Embedded Storage - Flash Map - Memory Technology Device (MTD) –MTD Architecture - MTD Driver for NOR Flash - The Flash Mapping drivers

UNIT V **DEVICE DRIVERS**

Device driver introduction - driver methods-Building and running modules - Communicating with hardware –USB Driver :Basics, USB and Sysfs- USB Urbs-writing a USB device driver

TOTAL: 45 PERIODS

REFERENCES

- 1. Dhananjay M. Dhamdhere, "Operating Systems A concept based Approach", Tata Mcgraw-Hill Publishing Company Ltd.
- 2. Matthias Kalle Dalheimer, Matt Welsh, "Running Linux", O'Reilly Publications 2005.
- 3. Mark Mitchell, Jeffrey Oldham and Alex Samuel, "Advanced Linux Programming" New Riders Publications 2008.
- 4. P.Raghavan, Amol Lad, Sriram Neelakandan, "Embedded Linux System Design and Development", Auerbach Publications 2006.
- 5. Karim Yaghmour, "Building Embedded Linux Systems", O'Reilly Publications 2003.
- 6. Christopher Hallinan,"Embedded Linux Primer" second edition.Pearson education 2012.
- 7. M.Beck, H.Bohme, "Linux kernel Programming" Third edition, Pearson education 2004.
- 8. Greg Kroah Heartman, Jonathan corbet, "Linux Device Drivers", O'Reilly Publications 2005.

10

8

8

10

RISC PROCESSOR ARCHITECTURE AND MES006 PROGRAMMING

AIM

To gain knowledge on architecture and programming of RISC processor

OBJECTIVE

- > To learn the architecture and instruction set of ARM 9 processor
- To study the architecture of CORTEX M3 processor
 To study the architecture of CORTEX A9 processor

UNIT I ARM920T ARCHITECTURE

Advanced RISC Machine (ARM) Family- different technologies from ARM - ARM920T processor Core & Architectures - ARM Programmer's model : Registers, Interrupt, Exception handling

UNIT II **ARM920T INSTRUCTION SET**

ARM Instruction set: Data processing, Branch, SWI, SWP, CDP, and CoProcessor data transfer instructions - Thumb instruction set: Different Formats - ARM Assembly Language Programming examples

UNIT III **ARM920T INTERNAL PERIPHERALS**

Memory controller - I/O Ports - Nand flash controller - Timer - UART - USB device controller -Real time clock (RTC) - ADC & Touch screen interface

UNIT IV **CORTEX A9**

Introduction Cortex A9: Features, Varients, Configurable options – top level functional diagram -Programmer's model -NEON Technology-Preload Engine-Memory Management Unit-Debug interface

UNIT V **CORTEX M3**

Introduction Cortex M3: Features, Varients, Configurable options -top level functional diagram -Programmer's model - Memory Protection Unit-Nested Vector interrupted controller-Embedded Trace Macro Cell.

REFERENCES

- 1. Steve Furber, "ARM system on chip architecture", Addision Wesley, 2001.
- 2. Andrew N. Sloss, Dominic Symes, Chris Wright, John Rayfield, "ARM System Developer's Guide Designing and Optimizing System Software", Elsevier 2007.
- 3. Cortex A9 User Manual
- 4. www.arm.com
- 5. User's Manual: S3C2410X
- 6. Cortex M3 User Manual

TOTAL: 45 PERIODS

9

9

LTPC 3 0 0 3

9

9

To impart knowledge on designing and modeling of advanced embedded system

OBJECTIVE

- > To review the hardware and software of embedded systems
- > To learn system modeling and partitioning of hardware and software
- > To study hardware software co-synthesis and concurrent design process models
- > To study memory types and interfacing peripherals with embedded systems

UNIT I INTRODUCTION TO EMBEDDED HARDWARE AND SOFTWARE

Terminology - Gates - Timing diagram - Memory - Microprocessor buses – Direct memory access - Interrupts - Built interrupts - Interrupts basis - Shared data problems - Interrupt latency -Embedded system evolution trends - Interrupt routines in an RTOS environment.

UNIT II SYSTEM MODELLING WITH HARDWARE/SOFTWARE PARTITIONING

Embedded systems, Hardware/Software Co-Design, Co-Design for System Specification and modelling- Single-processor Architectures & Multi-Processor Architectures, comparison of Co-Design Approaches, Models of Computation, Requirements for Embedded System Specification, Hardware/Software Partitioning Problem, Hardware/Software Cost Estimation, Generation of Partitioning by Graphical modelling, Formulation of the HW/SW scheduling, Optimization.

UNIT III HARDWARE/SOFTWARE CO-SYNTHESIS

The Co-Synthesis Problem, State-Transition Graph, Refinement and Controller Generation, Distributed System Co-Synthesis.

UNIT IV MEMORY AND INTERFACING

Memory: Memory write ability and storage performance - Memory types - composing memory - Advance RAM interfacing communication basic - Microprocessor interfacing I/O addressing - Interrupts - Direct memory access - Arbitration multilevel bus architecture - Serial protocol - Parallel protocols - Wireless protocols - Digital camera example.

UNIT V CONCURRENT PROCESS MODELS AND HARDWARE SOFTWARE CO-DESIGN

Modes of operation - Finite state machines - Models - HCFSL and state charts language - state machine models - Concurrent process model - Concurrent process - Communication among process - Synchronization among process - Implementation - Data Flow model. Design technology - Automation synthesis - Hardware software co-simulation - IP cores - Design Process Model.

TOTAL: 45 PERIODS

9

9

9

9

REFERENCES

- 1. David. E. Simon, "An Embedded Software Primer", Pearson Education, 2001.
- 2. Tammy Noergaard, "Embedded System Architecture, A comprehensive Guide for Engineers and Programmers", Elsevier, 2006
- 3. Raj Kamal, "Embedded Systems- Architecture, Programming and Design" Tata McGraw Hill, 2006.
- 4. Frank Vahid and Tony Gwargie, "Embedded System Design", John Wiley & sons, 2002.
- 5. Steve Heath, "Embedded System Design", Elsevier, Second Edition, 2004.
- 6. Ralf Niemann, "Hardware/Software Co-Design for Data Flow Dominated Embedded Systems", Kluwer Academic Pub, 1998.
- 7. Jorgen Staunstrup, Wayne Wolf, "Hardware/Software Co-Design: Principles and Practice", Kluwer Academic Pub,1997.
- 8. Giovanni De Micheli, Rolf Ernst Morgon, "Reading in Hardware/Software Co-Design" Kaufmann Publishers, 2001.

To study the concepts of cryptography and methods of securing the network

OBJECTIVE

- > To learn encryption techniques and use of ciphers.
- To gain knowledge on public key encryption hash function and authentication protocols.
- > To learn network security practice, key management and authentication.
- > To know the methods of keeping the system secure

UNIT I SYMMETRIC CIPHERS

Overview - classical Encryption Techniques - Block Ciphers and the Data Encryption standard - Introduction to Finite Fields - Advanced Encryption standard - Contemporary Symmetric Ciphers - Confidentiality using Symmetric Encryption.

UNIT II PUBLIC-KEY ENCRYPTION AND HASH FUNCTIONS

Introduction to Number Theory - Public-Key Cryptography and RSA - Key Management - Diffie-Hellman Key Exchange - Elliptic Curve Cryptography - Message Authentication and Hash Functions - Hash Algorithms - Digital Signatures and Authentication Protocols.

UNIT III NETWORK SECURITY PRACTICE

Authentication Applications - Kerberos - X.509 Authentication Service - Electronic mail Security - Pretty Good Privacy - S/MIME - IP Security architecture – Authentication Header - Encapsulating Security Payload - Key Management.

UNIT IV SYSTEM SECURITY

Intruders - Intrusion Detection - Password Management - Malicious Software - Firewalls - Firewall Design Principles - Trusted Systems.

UNIT V WIRELESS SECURITY

Introduction to Wireless LAN Security Standards - Wireless LAN Security Factors and Issues.

TOTAL: 45 PERIODS

REFERENCES

- 1. William Stallings, "Cryptography and Network Security Principles And Practices", Pearson Education, 3rd Edition, 2003.
- 2. Atul Kahate, "Cryptography and Network Security", Tata McGraw Hill, 2003.
- 3. Bruce Schneier, "Applied Cryptography", John Wiley and Sons Inc, 2001.
- 4. Stewart S. Miller, "Wi-Fi Security", McGraw Hill, 2003.
- 5. Charles B. Pfleeger, Shari Lawrence Pfleeger, "Security In Computing", 3rd Edition, Pearson Education, 2003.
- 6. Mai, "Modern Cryptography: Theory and Practice", First Edition, Pearson Education, 2003.

9

9

9

9

MES009 COMPUTERS IN NETWORKING AND DIGITAL CONTROL

LTPC 3 0 0 3

AIM

To gain knowledge on computers in networking and digital control

OBJECTIVE

- \geq To learn the fundamentals of networking
- \geq To learn the concepts of data communication, encoding and congestion control
- \triangleright To understand hardware and software simulation of I/O communication blocks and virtual instrumentation.
- \geq To be skilled at measurement and control.

UNIT I NETWORK FUNDAMENTALS

Data communication networking - Data transmission concepts - Communication networking - Overview of OSI- TCP/IP layers - IP addressing - DNS - Packet Switching -Routing -Fundamental concepts in SMTP, POP, FTP, Telnet, HTML, HTTP, URL, SNMP, ICMP.

DATA COMMUNICATION UNIT II

Sensor data acquisition, Sampling, Quantization, Filtering ,Data Storage, Analysis using compression techniques, Data encoding - Data link control - Framing, Flow and Error control, Point to point protocol, Routers, Switches, Bridges - MODEMs, Network layer Congestion control, Transport layer- Congestion control, Connection establishment.

VIRTUAL INSTRUMENTATION UNIT III

Block diagram and Architecture - Data flow techniques - Graphical programming using GUI - Real time system - Embedded controller - Instrument drivers - Software and hardware simulation of I/O communication blocks - ADC/DAC - Digital I/O - Counter, Timer, Data communication ports.

UNIT IV **MEASUREMENT AND CONTROL THROUGH INTERNET**

Web enabled measurement and control-data acquisition for Monitoring of plant parameters through Internet - Calibration of measuring instruments through Internet, Web based control - Tuning of controllers through Internet

UNIT V VI BASED MEASUREMENT AND CONTROL

Simulation of signal analysis & controller logic modules for Virtual Instrument control -Case study of systems using VI for data acquisition, Signal analysis, controller design, Drives control.

TOTAL: 45 PERIODS

9

9

Q

9

REFERENCES

- 1. Wayne Tomasi, "Introduction to Data communications and Networking" Pearson Education, 2007.
- 2. Al Williams, "Embedded Internet Design", Second Edition, TMH, 2007.
- 3. Douglas E.Comer, "Internetworking with TCP/IP, Vol. 1", Third Edition, Prentice Hall, 1999.
- 4. Cory L. Clark, "LabVIEW Digital Signal Processing and Digital Communication", TMH Edition 2005.
- 5. Behrouza A Forouzan,"Data Communications and Networking" Fourth edition, TMH, 2007.
- 6. Krishna Kant, "Computer based Industrial control", PHI, 2002.
- Gary Johnson, "LabVIEW Graphical Programming", Second edition, McGraw Hill, Newyork, 1997.
- 8. Kevin James, "PC Interfacing and Data Acquisition: Techniques for measurement, Instrumentation and control, Newnes, 2000.
- 9. Cory L. Clark, "LabVIEW Digital Signal processing and Digital Communications" Tata McGraw-Hill edition, 2005.

To impart knowledge on distributed embedded computing and its architecture

OBJECTIVE

- > To gain knowledge on hardware infrastructure of distributed system.
- \blacktriangleright To learn the concepts of internet.
- > To study streaming, serialization and networking in JAVA
- > To study the design of embedded agent and co-ordination mechanisms
- > To learn the architecture of embedded computing and design methodologies.

UNIT I THE HARDWARE INFRASTRUCTURE

Broad Band Transmission facilities - Open Interconnection standards - Local Area Networks - Wide Area Networks - Network management - Network Security - Cluster computers.

UNIT II INTERNET CONCEPTS

Capabilities and limitations of the internet - Interfacing Internet server applications to corporate databases HTML and XML Web page design and the use of active components.

UNIT III DISTRIBUTED COMPUTING USING JAVA

IO streaming - Object serialization - Networking - Threading - RMI - multicasting - distributed databases - embedded java concepts - case studies.

UNIT IV EMBEDDED AGENT

Introduction to the embedded agents - Embedded agent design criteria - Behaviour based, Functionality based embedded agents - Agent co-ordination mechanisms and benchmarks embedded-agent. Case study: Mobile robots.

UNIT V EMBEDDED COMPUTING ARCHITECTURE

Synthesis of the information technologies of distributed embedded systems - analog/digital co-design - optimizing functional distribution in complex system design - validation and fast prototyping of multiprocessor system-on-chip - a new dynamic scheduling algorithm for real-time multiprocessor systems.

TOTAL: 45 PERIODS

REFERENCES

- 1. Dietel & Dietel, "JAVA how to program", Prentice Hall 1999.
- 2. Sape Mullender, "Distributed Systems", Addison-Wesley, 1993.
- 3. George Coulouris and Jean Dollimore, "Distributed Systems concepts and design", Addison Wesley 1988.
- **4.** Bernd Kleinjohann, "Architecture and Design of Distributed Embedded Systems", Clab, Universitat Paderborn, Germany, Kluwer Academic Publishers, Boston, April 2001.

9

9

9

9